911

NOTES

A NEW ANTIBIOTIC Y-T0678H PRODUCED BY A CHROMOBACTERIUM SPECIES

HARUMITSU IMAI, KEN-ICHI SUZUKI, SHIGERU MIYAZAKI, KOICHI TANAKA, SHUNICHI WATANABE and MASARU IWANAMI

Central Research Laboratories, Yamanouchi Pharmaceutical Co., Ltd., 1–1–8, Azusawa, Itabashi-ku, Tokyo 174, Japan

(Received for publication April 2, 1983)

In the course of our screening for new antibiotics, a Chromobacterium strain Y-T0678H isolated from a soil sample collected at Lake Kamakita in Saitama Prefecture, Japan, was found to produce a new antibiotic.

The strain Y-T0678H was an aerobic Gramnegative rod, motile with a single polar flagellum and one or two lateral flagella. The strain could grow at pH $6 \sim 8$ between $10 \sim 33^{\circ}$ C, but not at temperatures higher than 37° C and lower than 5° C. Glucose, trehalose and fructose were fermented. Casein was hydrolyzed strongly and HCN was produced. The strain also produced a violet pigment on several media. On the basis of the characteristics described above, the strain was identified as *Chromobacterium violaceum*^{1,2)}.

The strain was cultured in 500-ml Erlenmeyer flasks containing 50 ml of a medium composed of 2.0% dextrin, 3.0% soybean meal, 1.2% MgSO₄· 7H₂O and 1.0% CaCO₃ on a rotary shaker at 27°C for 24 hours. The antibiotic activity was monitored by paper disc assay using *Escherichia coli* K-12 as a test organism.

The fermentation broth (1,400 ml) was filtered and extracted with ethyl acetate at pH 4. After extraction, the organic layer was transferred to sodium bicarbonate solution at pH 8 and reextracted with ethyl acetate at pH 4. The organic layer was concentrated to dryness. The crude substance (200 mg) thus obtained was purified on a preparative thin-layer chromatography (Precoated TLC silica gel F-254, Merck; CHCl₈ -MeOH, 4: 1). The antibiotic was isolated as a Fig. 1. Structure of Y-T0678H.

Table 1. Antimicrobial spectrum of Y-T0678H.

Test organism	MIC (µg/ml)
Bacillus subtilis ATCC 6633	>100
Micrococcus luteus ATCC 9341	>100
Staphylococcus aureus ATCC 6538P	>100
Corynebacterium xerosis	>100
Mycobacterium smegmatis ATCC 607	>100
Escherichia coli O-1	0.39
E. coli NIHJ	0.78
Klebsiella pneumoniae ATCC 10031	12.5
K. pneumoniae Y-11	3.13
Salmonella enteritidis 1891	0.78
Shigella sonnei II 37148	0.78
Proteus mirabilis IFM OM-9	3.13
P. morganii IID 602	1.56
Serratia marcescens IID 620	3.13
S. marcescens NY-10	3.13
Enterobacter cloacae 963	1.56
E. aerogenes ATCC 13048	12.5
Pseudomonas aeruginosa NCTC 10490	>100
P. putida IAM 1002	>100

MIC was determined by the serial agar dilution method with Mueller-Hinton medium. Inoculation with 10⁶ cells/ml.

white powder (40 mg).

The physicochemical properties of Y-T0678H are as follows; acidic white powder; mp 247°C (decomp.); $[\alpha]_{D}^{22} 0^{\circ} (c 0.5, \text{MeOH})$; color reaction: positive ferric chloride, negative ninhydrin; HR-MS M⁺ 151.02721 C₇H₅NO₈; Anal. Calcd. for C7H5NO3: C 55.64, H 3.33, N 9.27, O 31.76, Found: C 55.38, H 3.21, N 9.06; UV_{max}^{MeOH}: 220 (E^{1%}_{1em} 894), 250 (450), 258 sh (408), 273 sh (290), 278 sh (342), 283 (376), and 289 nm (366); IR (KBr): 3150, 1650, 1610, 1480, 1460, 1400, 1280 and 1100 cm⁻¹; ¹H NMR (DMSO-d_θ): δ 6.8 (1H, d, J=1.95), 6.8 (1H, dd, J=9.03, J=1.95), 7.5 (1H, d, J=9.03), 10.3 (1H, broad) and 12.0 (1H, broad); ¹³C NMR (DMSO- d_6): δ 165.5 (s), 164.9 (s), 160.5 (s), 122.0 (d), 113.0 (d), 106.9 (s) and 95.1 (d). The analytical and spectroscopic data

of Y-T0678H indicated above, suggested that the structure was 6-hydroxy-3-oxo-1,2-benzisoxazolin (I) as shown in Fig. 1. The structure was confirmed by actual synthesis starting from methyl-2, 4-dihydroxybenzoate by a similar method suggested by BösHAGEN⁸⁾. These two samples of I gave identical spectral data and similar antimicrobial activity. The antimicrobial activity of Y-T0678H was shown in Table 1. Y-T0678H exhibits a selective activity against Gram-negative bacteria. The acute toxicity (LD_{50}) in mice of Y-T0678H is about 1,560 mg/kg (i.v.).

Acknowledgment

The authors are grateful to Dr. SHIBANUMA of our

chemical research department, for synthesizing standard product of Y-T0678H and the staff of physicoanalysis group for measurement of spectral data and useful suggestion.

References

- PRIDHAM, T. G. & H. D. TRESNER: BERGEY'S Manual of Determinative Bacteriology. 8th ed., The Williams & Wilkins Co., Baltimore, 1974
- DEMOSS, R. D.: Violacein. In Antibiotics. Ed. GOTTLIEB & SHAW, Vol. 2, pp. 77~81, Springer Verlag, New York, 1967
- Böshagen, H.: Über die Synthese der 3-Hydroxy-1,2-benzisoxazole. Chem. Ber. 100: 954~960, 1967